
 1

Verification of Autonomous Systems for Space
Applications

G. Brat, E. Denney, D. Giannakopoulou, J. Frank*, and A. Jonsson
USRA/RIACS *NASA

NASA Ames Research Center
MS 269/2 *MS 269/1

Moffett Field, CA 94035-1000
{brat,edenney,dimitra,frank,jonsson}@email.arc.nasa.gov

Abstract—Autonomous1,2 software, especially if it is based
on model, can play an important role in future space
applications. For example, it can help streamline ground
operations, or, assist in autonomous rendezvous and
docking operations, or even, help recover from problems
(e.g., planners can be used to explore the space of recovery
actions for a power subsystem and implement a solution
without (or with minimal) human intervention). In general,
the exploration capabilities of model-based systems give
them great flexibility. Unfortunately, it also makes them
unpredictable to our human eyes, both in terms of their
execution and their verification. The traditional verification
techniques are inadequate for these systems since they are
mostly based on testing, which implies a very limited
exploration of their behavioral space. In our work, we
explore how advanced V&V techniques, such as static
analysis, model checking, and compositional verification,
can be used to gain trust in model-based systems. We also
describe how synthesis can be used in the context of system
reconfiguration and in the context of verification.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. AUTONOMOUS SYSTEM OVERVIEW......................1
3. VERIFICATION FRAMEWORK................................2
4. TRADITIONAL VERIFICATION...............................3
5. A COMPOSITIONAL APPROACH.............................4
6. RECONFIGURATION AND SYNTHESIS6
7. CONCLUSIONS ...9
REFERENCES ...10
BIOGRAPHY...10

1. INTRODUCTION

Autonomous software, especially if it is based on model,
can play an important role in future space applications. For
example, it can help streamline ground operations, or, assist
in autonomous rendezvous and docking operations, or even,
help recover from problems. Planners can be used to
explore the space of recovery actions for a power subsystem

1 0-7803-9546-8/06/$20.00© 2006 IEEE
2 IEEEAC paper #1488, Version 1, Updated November 4, 2005

and implement a solution without (or with minimal) human
intervention. In general, the exploration capabilities of
model-based systems give them great flexibility.
Unfortunately, it also makes them unpredictable to our
human eyes, both in terms of their execution and their
verification. The traditional verification techniques are
inadequate for these systems since they are mostly based on
testing, which implies a very limited exploration of their
behavioral space. In our work, we explore how advanced
V&V techniques, such as static analysis, model checking,
and compositional verification, can be used to gain trust in
model-based systems.

Planning systems are made of two parts: the domain model
describes the domain on which the planner can reason and
the planning engine performs the reasoning (usually in the
form of a systematic exploration of the state space induced
by the planning goals and the domain model). These two
parts yield different V&V challenges. On one hand, the
planning engine can be verified in terms of its mechanisms,
i.e., check that forward propagation is done correctly, check
that constraints are elaborated correctly, and so on. We
believe this can be done using automatic proving
techniques. The use of these techniques comes with a high
cost, but the planning engine only needs to be validated
once. In some sense, it is a bit similar to validating a
compiler. On the other hand, domain models change
depending on the applications. This is where knowledge
specific to a given problem is captured. Each new domain
model needs to be validated. We focus on the verification of
domain models for model-based systems and describe what
type of properties can be checked on these models. We will
also discuss how concepts used in static analysis, such as
abstractions, can help decompose the verification process,
hence, making it more scalable. Finally, we describe how
model synthesis can help the verification process.

2. AUTONOMOUS SYSTEM OVERVIEW

The system under consideration follows a three-layered
architecture. The top layer, also called the decision layer,
consists of a domain model and a search engine. The

 2

domain model lists the constraints that describe the
relationships between elements of the system (which may
include environmental constraints) and the flight rules that
need to be followed during planning. The search engine
does the actual planning, i.e., it elaborates and scheduled
activities to meet a given goal under the constraints
described in the domain model [12]. In our project, we rely
on the EUROPA planning framework. The output of the
decision layer is a plan. The middle layer, also called the
executive, takes a plan and “executes” it by issuing
commands to the controllers in the bottom layer, also called
functional layer. The executive is responsible for issuing
commands, checking that commands are actually executed,
and responding to exception signals generated by the
controllers. The functional layer is a collection of
controllers that actually command the hardware devices of
the physical system. This is the lowest level of an autonomy
software system. In our project, we rely on the functional
layer provided by the CLARAty project [15].

Executive

Robotics

Domain model

Interface to users/operations
Planner

Search

Resources Uncertainty

Control software

ResourcesVisual manipulation

Executive

Robotics

Domain modelDomain model

Interface to users/operations
Planner

Search

Resources Uncertainty

Planner

Search

Resources Uncertainty

Control software

ResourcesVisual manipulation

Control software

ResourcesVisual manipulation

Figure 1. Architecture of autonomous systems.

The goal of our project is to provide a robust architecture.
This means that we should be able to verify every
component in autonomous systems built with our
architecture. Moreover, we recognize that reconfiguration
plays an important role at NASA. Therefore, our
architecture needs to support reconfiguration, not only in
terms of adding, removing, or changing components in the
functional layer, but also in terms of adding planning and
execution capabilities. This guarantees us that our system
can be deployed in a variety of domains and that it can
evolve with technology progress. As we will show in the
next sections, taking into account reconfiguration actually
helps the verification process.

3. VERIFICATION FRAMEWORK

From a V&V point of view, each element requires different
techniques, even though some basic techniques (such as
code analysis) can be applied across the board.

In terms of deployment, there are degrees of autonomy. The
current practice is to use planners on the ground (MER) and
rely on rough command and data handling systems.
Progressively, these technologies will become more and
more ambitious and the migration of complex capabilities
on board will depend on their trustworthiness. Trust is
directly related to the number of possible scenarios that can
safely be handled by an autonomous system. These
scenarios define a safe operational envelope. Obviously, the
goal is to verify the system for as large an envelope as
possible. Current mission practices ensure safety by testing
the system for a set of nominal scenarios and some off-
nominal scenarios. This process is costly and does not
account much for variations to nominal scenarios.
Moreover, it offers little coverage of the off-nominal
scenarios. We are proposing to go beyond that by first
relying on an advanced form of testing (e.g., runtime
monitoring) to offer a measurable level of certification for
all fault classes, and then, increasing trust by progressively
replacing testing by advanced formal verification techniques
(e.g., static analysis and model checking). This paper
focuses on the practical application of these advanced
techniques.

The functional layer, containing the control software, is the
closest to traditional embedded software systems. It mostly
consists of control device drivers for actuators or sensors as
well as mathematical and algorithmic libraries. For these
elements, we are mostly concerned with certifying that they
cannot crash (regardless of their inputs) and assessing their
performance in terms of execution time and memory
management. This suggests that a V&V approach based on
embedded system verification can be applied in a
straightforward manner. Note that it is possible that some
elements related to planning or execution can find their way
down to this layer; in which case, they are amenable to the
same techniques used for the planner and the executive.

In some high-level view, the executive and the planner are
quite similar. Using a formal model (the domain model for
the planner and a plan for the executive), a reasoning engine
computes an output (a plan for the planner and low-level
commands for the executive). The reasoning engine is
usually fairly mechanical (mostly performing searches) and
rarely changed (in theory, only the domain model changes
for a new application). Therefore, we can afford to bring to
bear some “heavy” V&V techniques (e.g., precise static
analysis, theorem proving) to verify that the mechanical
operation of the reasoning engine (e.g., graph expansion,
constraint propagations, and rollbacks) are properly
performed. For the domain model, we are concerned with

 3

well-formedness (are constraints legal?), consistency (can
constraints lead to inconsistent solutions or a deadlock?),
and completeness (have we specified all necessary
constraints?). Given the nature of the representation (i.e.,
constraints), it is natural to explore the possibility of using
model checking to check these properties. However, model
checking is not likely to scale better than search (planning)
techniques; therefore, our emphasis will be on using proper
abstractions (which have a relationship to plan graphs) and
compositional techniques.

As mentioned above, the engine requires checking for
“mechanical” properties while models require some
functional correctness verification. As shown in Figure 2,
mechanical properties include programming errors (e.g.,
null pointer de-references), system-level errors (e.g.,
deadlocks and data races), and data manipulation errors
(e.g., plan manipulation and constraint propagation). These
properties are organized in a hierarchy that reflects the
masking power of each fault class. For example,
programming errors might mask synchronization errors,
which in turn might mask data manipulation errors. This
imposes a natural progression in the verification process:
first, eliminate programming errors, then system-level
errors, and finally, data manipulation errors. Once we have
achieved a satisfying level of certification of “mechanical”
properties, we can study performance of the engine (e.g.,
execution times and memory usage), which is important for
on-board execution. Note that mechanical properties are
checked only when the engine changes while functional
properties are checked for each application (i.e., each new
model).

Model-based System
Certification

V&V for Models V&V for Search
Engine

Flight Rules
Violations

Consistency/
Completeness

Error

Eliminate Domain Model Errors

Eliminate Coding Errors

Data
Manipulation

Errors

Resource &
Timing
Errors

CodingErrors System-level
Errors

Eliminate Performance Errors

V&V for Interfacing
Components in

Autonomous System

Model-based System
Certification

V&V for Models V&V for Search
Engine

Flight Rules
Violations

Consistency/
Completeness

Error

Eliminate Domain Model Errors

Eliminate Coding Errors

Data
Manipulation

Errors

Resource &
Timing
Errors

CodingErrors System-level
Errors

Eliminate Performance Errors

Model-based System
Certification

V&V for Models V&V for Search
Engine

Flight Rules
Violations

Consistency/
Completeness

Error

Eliminate Domain Model Errors

Eliminate Coding Errors

Data
Manipulation

Errors

Resource &
Timing
Errors

CodingErrors System-level
Errors

Eliminate Performance Errors

V&V for Interfacing
Components in

Autonomous System

Figure 2. Fault tree analysis for autonomous system.

4. TRADITIONAL VERIFICATION

As we mentioned in the previous section, programming and
system-level errors can be present in all elements of an
autonomous system. It is particularly relevant in the
functional layer where components are very similar to
traditional embedded software. However, it is also
important in the context of planning and scheduling, even
though it might be harder to analyze than functional
elements.

It is clear that our previous research on the verification of
traditional embedded systems is directly relevant for
programming and system-level errors. Therefore, we plan
on using static analysis [4], model checking, and, some
advanced form of testing. Static analysis is quite good at
catching coding errors. Model checking is particularly good
at catching system-level errors such as concurrency errors
(deadlocks, data races, and so on). Advanced testing can
offer several improvements over traditional testing. For
example, we can automate the generation of input cases and
test oracles using model checking techniques. In particular,
we can use a form of symbolic execution to generate inputs
for complex data types such as lists and graphs. This is quite
interesting when it comes to testing a planner or an
executive, which are all about manipulating graphs.

The use of each of these techniques deserves a full paper. In
the interest of space, we only describe an experiment in
which we try to determine how useful static analysis can be
on code implementing a planner. We first start by a brief
introduction to static analysis.

Static program analysis

The goal of static analysis is to assess code properties
without executing the code. Several techniques can be used
to perform static analysis, such as theorem proving, data
flow analysis [13], constraint solving [1], and abstract
interpretation [5,6]. For this experiment, we use a tool,
called PolySpace C++ Verifier [17], which is based on
abstract interpretation. The theory of Abstract Interpretation
pioneered by Patrick and Radhia Cousot in the mid 70's
provides a formal framework for building program
analyzers which can detect runtime errors by exploring the
text of the program [5,6]. The fundamental result of
Abstract Interpretation is that program analyzers obtained
by following the framework are guaranteed to cover all
possible execution paths.

Runtime errors are errors that cause exceptions at runtime.
Typically, in C, either they result in creating core files or
they cause data corruption that may cause crashes. In this
study we mostly looked for the following runtime errors:

(1) Access to un-initialized variables (NIV)

(2) Access to un-initialized pointers (NIP)

(3) Out-of-bound array access (OBA)

(4) Arithmetic underflow/overflow (OVF)

(5) Invalid arithmetic operations (e.g., dividing by zero or
taking the square root of a negative number) (IAO)

(6) Non-terminating loops (NTL)

(7) Non-terminating calls (NTC)

 4

The price to pay for exhaustive coverage is incompleteness:
the analyzer can raise false alarms on some operations that
are actually safe. However, if the analyzer deems an
operation safe, then this property holds for all possible
execution paths. The program analyzer can also detect
certain runtime errors which occur every time the execution
reaches some point in the program. Therefore, a program
analyzer can be used either as a debugger that detects
runtime errors statically without executing the program or
as a preprocessor that reduces the number of potentially
dangerous operations that have to be checked by another
validation process (code reviewing, test writing, and so on).

PolySpace C++ Verifier is the first tool implementing
Abstract Interpretation techniques that is able to scale up to
software systems of industrial size. This tool takes an ISO-
compliant piece of C++ code and performs static analysis
using sophisticated Abstract Interpretation algorithms. The
result is the program in which all potentially dangerous
operations have been assigned a color:

Green the operation is safe, no runtime error can occur at
this point

Red a runtime error occurs whenever the operation is
executed

Black the operation is unreachable (dead code)

Orange the operation is potentially dangerous (runtime
error or false alarm).

The goal of our experiment is to assess the selectivity of
PolySpace C++ Verifier on C++ programs, especially those
implementing our architectural framework.

Example: static analysis of PLASMA’s temporal network

We are analyzing parts of the PLASMA planning
framework. The goal of this experiment is to assess the
efficiency of static analysis techniques in verifying that
planning code is free of runtime errors. This sounds like it
should be a straightforward task; however, planning code
uses quite a bit of dynamic data structures (graphs,
constraints), which are usually hard to analyze with static
analyzers. Indeed, static analysis does better on code whose
behavior is known at compile time, which is not the case for
a planner. We report on the lessons of this experiment.

For this experience, we focused on the code implementing
temporal networks, and in particular, we concentrated on
classes implementing distance graphs. These graphs are
routinely used during planning. The first lesson was learned
when the analyzer performed a phase similar to the semantic
analysis performed by compilers. Basically, at this stage, the
analyzer parses the code, checks its type correctness, and,
most importantly, checks its conformance to the C++
standards. Not unexpectedly, the analyzer was much stricter

than the gcc compiler used to compile the code (even
though the code compiles under gcc 4.0.0, which is close to
implementing the complete C++ standards). This result
usually puts off developers, who dismiss it thinking that the
analyzer is overly picky. However, it actually shows that the
code is not highly portable since it depends on
idiosyncrasies of a particular compiler. In the absence of a
compiler implementing the C++ standards, this can be
mitigated by using several compilers (the idea being that
each compiler might compensate the shortcomings of
another one).

In general, static program analyzers perform whole program
analysis, meaning that they start their analysis from a main
routine and they analyze the code based on the call graph
rooted at the main. This simplifies the job since the main
provides an environment that restricts the behavior of the
code. However since we need to take into account the fact
that the system may be reconfigured, we want to analyze the
generic parts of the system (the planner, the executive) in a
generic manner. Fortunately, the verifier offers the option of
analyzing code one class at a time. The way it works is that
the analyzer generates for each class a main that implement
a universal environment. This allows us to obtain general
results. However, general results are typically worse than
contextual results (see next paragraph). This is acceptable if
one can parameterize the results base don the shape of the
inputs. For that, we need access to the generated main
routines, which is actually not the case for the moment. So,
the second big lesson is that to implement a truly
compositional analysis we need to control the contextual
information of the analysis.

We now present the results obtained during analysis. First,
we should remark that the analysis did not reveal any red
errors. Therefore, either the code has no errors or the
analysis has precision problems. We lean towards the latter
explanation. A good indication of the imprecision of the
analysis is given by the rate of oranges (recall that oranges
might be errors or false positives). The rate varies from 50%
to 13% of oranges depending on the type of the error. A rate
of 50% is an awful result; however, it was obtained on the
class of overflow errors which account for less than 2% of
the checks performed by the analyzer. The class of error
with a 13% rate represents close to 70% of the number of
checks performed by the analyzer. So, overall, we end up
with a total rate of less than 20% of oranges. This is high
but not uncommon in static analysis. It shows that we need
to do a better job at providing contextual information for the
analysis.

5. A COMPOSITIONAL APPROACH

Our goal is to design a verification framework that can
support reconfiguration. Therefore, we need a
compositional approach to verification. This will also help

 5

improve the salability of advanced verification techniques.
In any case, it is interesting to remark that the verification
property flow is different from the flow of decision. In the
architecture, the planner sits at the top and makes system-
level decisions. In the verification process, the executive is
at the top. As Figure 3 illustrates, the executive is a
confluence point for all properties.

Executive

Domain model

Interface to users/operations

Planner

Search

Resources Uncertainty

Control software

ResourcesVisual manipulation

Executive

Domain modelDomain model

Interface to users/operations

Planner

Search

Resources Uncertainty

Planner

Search

Resources Uncertainty

Control software

ResourcesVisual manipulation

Control software

ResourcesVisual manipulation

Figure 3. Flow of properties in autonomous system.

Let us consider timing properties. For example, we may
wish to establish that execution times fit within the timing
constraints of the physical system. From a real-time point of
view, the planner is delivering a service to the executive.
The planner delivers a high-level plan that needs to be
expanded by the executive. So, the execution time of
planner (i.e., the search time) needs to be propagated to the
executive so that the overall response time can be
computed. This example can be extended to other
properties, especially the ones expressing safety properties
pertaining to the whole system. They naturally flow to the
executive. This is where we really have a system-level view
of what is happening during execution.

For these reasons, we decided that the best place to
demonstrate the use of our compositional framework is at
the executive level. In the next two subsections, we first
describe the assume-guarantee framework, which provides
the theoretical basis for our compositional process, and
second, an example of its application to a system for
autonomous rendezvous and docking.

The assume-guarantee framework

Compositional verification decomposes the properties of a
system into properties of its components, so that if each
component satisfies its respective property, then so does the
entire system. Components are thus model checked
separately. It is often the case, however, that components
only satisfy properties in specific contexts (also called
environments). This has given rise to the assume-guarantee
style of reasoning.

Assume-guarantee reasoning [10,11,16] first checks
whether a component M guarantees a property P, when it is
part of a system that satisfies an assumption A. Intuitively, A
characterizes all contexts in which the component is
expected to operate correctly. To complete the proof, it
must also be shown that the remaining components in the
system (M's environment) satisfy A. This style of reasoning
is captured by the following assume-guarantee rule.

〈A〉 M1 〈P〉 (Premise 1)
〈True〉 M2 〈A〉 (Premise 2)

 〈True〉 M1 || M2 〈P〉

Several frameworks have been proposed to support this
style of reasoning. However, their practical impact has been
limited because they require extensive human input in
defining assumptions that are strong enough to eliminate
false violations, but that also reflect appropriately the
remaining system.

Previous work at NASA Ames has contributed to two main
approaches for automating assume-guarantee reasoning.
The first approach [8] synthesizes the assumption that a
component needs to make about its environment for a given
property to be satisfied. The assumption produced is the
weakest, that is, it restricts the environment no more and no
less than is necessary for the component to satisfy the
property. The automatic generation of weakest assumptions
has direct application to the assume-guarantee proof. More
specifically, it removes the burden of specifying
assumptions manually thus automating this type of
reasoning.

The second approach provides a model checking framework
for performing assume-guarantee reasoning using the above
rule in an incremental and fully automatic fashion. To check
that a system made up of two components M1 and M2
satisfies a property P, the framework automatically learns
and refines assumptions Ai for component M1 to satisfy the
property, which it then tries to discharge on component M2.
The framework uses an automata learning algorithm [2] to
construct the assumptions for the compositional analysis of
the models.

A useful characteristic of this framework is that the
generated assumptions are minimal; they strictly increase in
size as the learning algorithm progresses, and grow no
larger than the weakest assumption for M1 to satisfy P.
Moreover, in our experience, the interfaces between
components are small for well designed software.
Therefore, assumptions are expected to be significantly
smaller than the environment that they represent in the
compositional rules, and the cost of assume-guarantee
reasoning will be significantly smaller than monolithic
(non-modular) model checking, both in terms of time and
consumed memory. Recently, this framework has been
extended to handle more assume-guarantee rules and more
than two components [3].

The above techniques have been implemented in the LTSA
model checking tool [14] and have been used in the

 6

example described in the next section among other case
studies [9]. These techniques are general; they rely on
standard features of model checkers and could therefore
easily be introduced in any model checking tool.

Example: an autonomous rendezvous and docking system

A safety critical capability for spacecrafts, also relevant to
the CEV, is that of autonomous rendezvous and docking
(ARD). Over the last few months, we have been studying
ARD from a design perspective in order to understand the
characteristics of such a system and to identify verification
challenges that it poses. Based on (limited due to export
control issues) input from existing ARD systems (for
example, ISS) and from publications on such systems, we
have created an LTSA model of an example such system.

The model is essentially made up of two types of
components: sensors that are used to estimate the absolute
or relative position, velocity etc. of the spacecraft, and the
modes that constitute a typical ARD system. The ARD
software goes through the modes in a sequential manner,
and exhibits different behavior in each of these, as its goals
are different: for example, the spacecraft uses different
sensors (GPS, StarPlanetTracker, InertialNavigation) before
it approaches its docking target, but once it is in close
proximity, it uses a docking sensor that provides
information relative to the target. We have also modeled a
component named OrbitalState, which takes readings from
the sensors and returns to the ARD mode-related software
whether there are good readings from enough sensors to
have a good state estimation of the spacecraft for ARD. Our
current version of the model is untimed, which means that
our verification effort will not concentrate on timing issues.
However, we have modeled the requirement that you may
have limitations in the amount of time you may be in a
specific mode, or within the ARD system. We performed
this by including timers that may non-deterministically
timeout, in which case the ARD software will need to take
the appropriate measures.

We have expressed a number of properties that are typically
required from an ARD system. We have verified both local
properties of modes and system level properties. We report
here the results we obtained by applying learning-based
compositional verification to check a property which states
that:

“if within CaptureApproachMode two of my sensors fail, it
will not be possible to proceed to the next mode”

We have expressed two variants of this property in the
LTSA tool. We then decomposed the system in the
following way. On the one hand, we included all the mode-
related components. Since these are mostly sequential, the
composition is fairly small. On the other hand, we included
the OrbitalState component with stubbed out sensors to
make the model smaller. In checking these properties,
monolithic model checking ran out of memory whereas
compositional verification succeeded in proving the

properties in less than 2 minutes with an assumption of 6
states.

6. RECONFIGURATION AND SYNTHESIS

One of the original goals of this project is to provide an
autonomy architecture that fits NASA’s vision for
exploration. Autonomous systems might be deployed first
on the Crew Exploration Vehicle, the Cargo Launch
Vehicle, and then on the lunar, and eventually Mars,
surface. Re-inventing autonomous systems for each
deployment would be prohibitively costly to NASA.
Therefore, we recognize from the start that we need to
design not only for verification but also for reconfiguration.
This will allow us to use the same design and verification
techniques and to re-use components across deployments.
Moreover, it gives us a convenient means to evolve these
systems and keep pace with new technologies.

Figure 4 illustrates the possibilities for reconfiguration in
our architecture. First, the most obvious place for
reconfiguration is the functional layer where the control
software sits. For example, adding a camera to a rover will
trigger a reconfiguration in which control software for the
camera needs to be added to the functional layer. Generally,
such changes trigger changes in both the executive and the
planner. The domain model needs to be updated with the
constraints specific to the new camera. We can also imagine
that new reasoning capabilities (e.g., geometric reasoning)
can be added to the planner.

 7

Planner

Search

Resources Uncertainty

Executive

Robotics

Domain model

Interface to users/operations

Geometric reasoning

Control software

ResourcesVisual manipulation

Reconfiguration

Extensions

Planner

Search

Resources Uncertainty

Planner

Search

Resources Uncertainty

Executive

Robotics

Domain modelDomain model

Interface to users/operations

Geometric reasoning

Control software

ResourcesVisual manipulation

Control software

ResourcesVisual manipulation

Reconfiguration

ExtensionsExtensions

Figure 4. Reconfiguration of autonomy systems.

Reconfiguring autonomous systems is a complicated
exercise. If the architecture is not adapted, it can trigger
massive changes and result in high cost for the project.
Therefore, the architecture needs to be designed for
reconfiguration, which means that all aspects of the design
need to take into account the possibility of reconfiguration.
This is what we have done for verification; we have placed
compositional verification at the heart of our verification
process. Composition helps re-use verification artifacts in
connection with new verification artifacts (for the added
components) and efficiently put together the verification of
the reconfigured system. In so doing we created a scalable
verification mechanism which can deal with
reconfiguration.

We actually go one step further in improving the
verification process by using synthesis. Synthesis is a
formal form of automatic code generation. Generating code
automatically allows us to control the shape of the code, and
in particular, giving priority to language constructs that
facilitates the verification process (described in previous
sections). Moreover, our synthesis process itself generates
code in a trustworthy manner, which can completely
eliminate some error classes.

Introduction to synthesis

The aim is to have certified components. One way of
achieving this is to verify that components are free of bugs.
Another is to generate the components in an inherently

trustworthy manner. We are developing the use of
automated code generation (also known as program
synthesis) for this. Control software is particularly
appropriate for code generation since it can be modeled
concisely at a high-level, while the code which implements
it tends to be idiomatic.

We now give a brief overview of automated code
generation, and the AutoFilter system, which generates
Kalman filter-based state estimation code [18]. We then
describe the specific adaptations which have been carried
out so that AutoFilter generates CLARAty functional layer
components.

A code generator takes as input a domain-specific high-
level description of a task (e.g., a set of differential
equations) and produces optimized and documented low-
level code (e.g., C or C++) that is based on algorithms
appropriate for the task (e.g., the extended Kalman filter).
This automation increases developer productivity and, in
principle, prevents the introduction of coding errors.

AutoFilter [7] is a domain-specific program synthesis
system that generates customized Kalman filters for state
estimation tasks specified in a high-level notation.
AutoFilter's specification language uses differential
equations for the process and measurement models and
statistical distributions to describe the noise characteristics.
It can generate code with a range of algorithmic
characteristics and for several target platforms. The tool has
been designed with reliability of the generated code in mind
and is able to automatically certify that the code it generates
is free from various error classes (most are programming
error, some address functional concerns). Since
documentation is an important part of software assurance,
AutoFilter can also automatically generate various human-
readable documents, containing both design and safety
related information.

Due to the modularity of the CLARAty functional layer, we
can gradually develop our synthesis capabilities, one
module at a time. In the first part of the project, therefore,
we have concentrated on modifying AutoFilter's existing
synthesis capabilities in order to generate a CLARAty
estimator. There are a number of compelling reasons for
this.

(1) We already have substantial expertise in synthesizing
Kalman filters, so it will enable us to more easily gain
experience for the synthesis of other components.

(2) They form an integral part of not just rover software
(along with navigators and locomotors), but all
vehicles.

(3) They are directly affected by hardware
reconfiguration, in particular, sensor configurations

 8

(4) There is a clear notion of model for estimators
(namely, the sensor and system models, which are
already part of the CLARAty framework).

(5) There is substantial potential variability at multiple
levels (different algorithms, different sensor models,
mathematical approximations) so it offers scope for
reconfiguration.

In CLARAty, estimators are part of the functional layer.
The estimator class offers functionality for generic
estimators, from which the kalman_filter class is one
specialization.

Example: synthesis of a state estimator

The following extensions have been carried out to the
AutoFilter program synthesis system in order to let it
generate code in the CLARAty framework.

The original system synthesized code from specifications in
a number of stages. First, the schemas generated code in the
synt intermediate language format. This was then
transformed into the lower-level lang, which is still an
internal abstract representation, but depends on the chosen
target language (e.g., C++). Finally, the lang code is pretty
printed in the native format of the target language.

The existing implementation, however, made a number of
architectural assumptions which were inapplicable to the
representation of filters in CLARAty. In particular, it
interleaved the construction of architecture-specific code
with the construction of mathematical entities common to
all filters. For example, the previous system assumed that a
filter obtained its measurements in batch form and that the
propagate-update cycle was within a for-loop of
predetermined size. Many of these assumptions were
implicit and undocumented.

The first change, therefore, was to separate these two parts
of the synthesis process and make what is constructed
mathematically a more explicit intermediate stage prior to
architectural specialization. The first stage now is the
construction of a "filter model". This is common to all
filters and consists of certain matrices, such as the state
transition and measurement matrices, and initial values for
the state vector and covariance matrices. It also contains
code for computing the residual and propagating the state.

The second stage is the transformation of the filter model
into a CLARAty (filter) model, which consists of a system
model, sensor model, measurable, and controllable. This
involves the construction of the appropriate C++ classes and
methods (in the internal lang format). Expressions that
involve concepts from the filter model must also be
transformed. For example, measurement variables are
represented as filter_model(myRover, meas) in

the filter model, and as measurement.get_mz () in
CLARAty.

A very simple example of part of an input specification
follows. The model describes a simple four wheeled rover
where the two left where are mechanically coupled (that is,
cannot move independently) as are the right wheels. The
state vector, x, estimates the left speed, right speed, and the
yaw rate of chassis. In the equations, l is vehicle length,
and u represents white noise. We assume that the sensors
directly measure the state variables, so the measurement
vector, z, just reads x, subject to noise, u. The equations
are given, in this case, in discrete rather than continuous
form.

Nominal model:

Measurement model:

disc x(0) := x(0) + u(0)
disc x(1) := x(1) + u(1)
disc x(2) := -x(0)/l + x(1)/l + u(2)

z(0,tvar) := x(0) + v(0)
z(1,tvar) := x(1) + v(1)
z(2,tvar) := x(2) + v(2)

Nominal model:

Measurement model:

disc x(0) := x(0) + u(0)
disc x(1) := x(1) + u(1)
disc x(2) := -x(0)/l + x(1)/l + u(2)

disc x(0) := x(0) + u(0)
disc x(1) := x(1) + u(1)
disc x(2) := -x(0)/l + x(1)/l + u(2)

z(0,tvar) := x(0) + v(0)
z(1,tvar) := x(1) + v(1)
z(2,tvar) := x(2) + v(2)

z(0,tvar) := x(0) + v(0)
z(1,tvar) := x(1) + v(1)
z(2,tvar) := x(2) + v(2)

Figure 5. Example of synthesis input specification.

The code that is generated is quite simple in this case, since
the filter is linear and all of the derived matrices are
constant. For example, Figure 6 shows the system model.
Note that some of the variables are declared elsewhere.

 9

class Nominal_filter_System_Model :
public KF_System_Model {

Vector<double> compute_transition
(const Vector<double> &state,
const kf_measurement_t &control)

{
Vector<double> state2 = state;
state2 = get_transition_matrix () * state;
return state2;

}
Matrix<double> get_transition_matrix()
{

double tmp[] = {1 , 0 , 0 , 0 , 1 , 0 ,
-1 / 1 , 1 / 1 , 0};

Matrix<double> m(1, 3 - 1, tmp);
return m;

}
Matrix<double> get_process_noise_matrix()
{

double tmp[] = {_sigma(0) , 0 , 0 , 0 ,
_sigma(1) , 0 , 0 , 0 ,
_sigma(2)};

Matrix<double> m(1, 3 - 1, tmp);
return m;

}
public:

Nominal_filter_System_Model
(Vector<double> &sigma)

{
Vector<double> _sigma = sigma;

}
private:
Vector<double> _sigma;

};

Figure 6. Example of synthesizes kalman filter class.

We are currently making a number of extensions in order to
deal with more substantial examples. For example, there is
not yet syntax in the specification language for specifying
the sources of measurables and controllables or their
uncertainty (we currently assume a fixed value). A more
interesting extension allows the use of complex expressions
for measurements, such as deltas, integrators, and virtual
sensors (that is, using one filter as the measurement for
another).

7. CONCLUSIONS

In this paper, we have described an approach to verify
autonomous systems. We are especially interested in
systems based on the three traditional layers (planning,
execution, and functional layer) and that are subject to
reconfiguration (either because of changes in the physical
system they control or because of a need to take advantage
of technology evolution).

Our verification approach is highly modular (hence, the
need for compositional verification) and exploits the
dichotomy found in autonomous systems (these systems
consist of models and reasoning engines). The first result is

that we target a variety of possible fault classes, from
traditional coding errors (run-time errors and system-level
errors) to functional errors (such as the violation of flight
rules). We also rely on a testing framework which is
enhanced by the use of advanced formal verification
techniques such as static analysis, model checking, and
theorem proving. The second result is that we use synthesis
as a fast and robust implementation tool (for code and
models) and as a means to augment the precision of our
verification results (by favoring constructs amenable to
verification).

This paper describes our overall approach and it
demonstrates the use of advance verification techniques
(static analysis and compositional verification) and
synthesis. We illustrate the use of these three techniques
with their application to different parts of our autonomy
architecture.

 10

REFERENCES

 [1] A. Aiken and M. Fähndrich, “Program Analysis using
Mixed Term and Set Constraints”. In Proceedings of the
4th International Static Analysis Symposium (SAS’97),
1997.

[2] D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation, 75(2).

[3] Barringer, H., Giannakopoulou, D., and Pasareanu, C.S.
Proof Rules for Automated Compositional Verification
through Learning. ESEC/FSE’03 Workshop on
Specification and Verification of Component-Based
Systems (SAVCBS’03).

[4] G. Brat, and A. Venet, “Precise and scalable static
program analysis of NASA flight software”. In
Proceedings of the 2005 IEEE Aerospace Conference,
Big Sky, MO, March 2005.

[5] P. Cousot and R. Cousot, “Static Determination of
Dynamic Properties of Programs”. In Proceedings of 2nd
International Symposium on Programming, pages 106-
130, 1976.

[6] P. Cousot and R. Cousot, “Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints”. In
Proceedings of 4th Symposium on Principles of
Programming Languages, pages 238-353, 1977.

[7] E. Denney, B. Fischer, J. Schumann and J. Richardson,
“Automatic certification of Kalman filters for reliable
code generation”. In Proceedings of the 2005 IEEE
Aerospace Conference, Big Sky, MO, March 2005.

[8] D. Giannakopoulou, C. S. Pasareanu, H. Barringer,
Component Verification with Automatically Generated
Assumptions, J. of Automated Software Engineering,
2005.

[9] Giannakopoulou, D., Pasareanu, C.S., Lowry, M.,
Washington, R. “Lifecycle Verification of the NASA
Ames K9 Rover Executive” , ICAPS'05 Workshop on
Verification and Validation of Model-Based Planning and
Scheduling Systems, Monterey, California, June 2005.

[10] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “You
assume, we guarantee: methodology and case studies”, in
Proc. of the International Conf. on Computer-Aided
Verification (CAV'98). LNCS 1427, pp. 440-451.

[11] C. B. Jones, Specification and design of parallel
programs. Information Processing 83: Proceedings of the
IFIP 9th World Congress, 1983: pp. 321--332.

[12] A. Jonsson and P. Morris and N. Muscettola and K.
Rajan and B. Smith, “Planning in Interplanetary Space:
Theory and Practice.” Outstanding Application Award
winner. Proceedings of the International Conference on
Artificial Intelligence Planning and Scheduling, 2000.

[13] W. Landi, “Interprocedural Aliasing in the Presence of
Pointers”, Ph.D. thesis, Rutgers University, 1992.

[14] J. Magee, and J. Kramer, Concurrency: State Models &
Java Programs: John Wiley & Sons, 1999.

[15] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T.
Estlin, Won Soo Kim, "CLARAty: An Architecture for
Reusable Robotic Software," SPIE Aerosense
Conference, April 2003.

[16] A. Pnueli, In Transition for Global to Modular Temporal
Reasoning about Programs, in Procedings of the Logic
and Models of Concurrent Systems. 1985.

[17] PolySpace: http://www.polyspace.com/.

[18] J. Whittle, and J. Schumann, “Automating the
Implementation of Kalman Filter Algorithms,” Accepted
for publication in ACM Transactions on Mathematical
Software (TOMS).

BIOGRAPHY

Dr. Brat received his M.Sc. and
Ph.D. in Electrical & Computer Engineering in 1998 (The
University of Texas at Austin, USA). His thesis defined a
(max,+) algebra to model and evaluate non-stationary,
periodic timed discrete event systems. Since then, he has
specialized on the application of static analysis to software
verification. From 1997 to June 1999, he worked at MCC
where he led a project that developed static analysis tools
for software verification. In June 1999, he joined the
Automated Software Engineering group at the NASA Ames
Research Center and focused on the application of static
analysis to the verification of large software systems. For
example, he co-developed and applied static analysis tools
based on abstract interpretation to the verification of
software for the Mars PathFinder, Deep Space One, and
Mars Exploration Rover missions at JPL, various
International Space Station controllers at MSFC, and the

 11

International Space Station Biological Research Project at
the NASA Ames Research Center.

Dr Ewen Denney (PhD University of
Edinburgh, 1999) has published over 30 papers in the areas
of automated code generation, software modeling, software
certification, and the foundations of computer science. He
has been at NASA Ames for three years, where he has
mainly worked on techniques for reliable automated code
generation.

Dr Dimitra Giannakopoulou has been a RIACS research
scientist at the NASA Ames Research Center since August
2000. Her research focuses on scalable specification and
verification techniques for NASA systems. In particular, she
is interested in incremental and compositional model
checking based on software components and architectures.
She holds a Ph.D. in Distributed Computing from Imperial
College, University of London. She has authored over 25
peer-reviewed technical publications. She acts as a regular
reviewer for scientific journals and has been a program
committee member for several international conferences.
More information is available at:
http://ti.arc.nasa.gov/people/dimitra/.

Dr. Ari Jónsson is a recognized leader in the development
of advanced planning and scheduling technology for space
operations, and has worked on both theoretical foundations
and applications, which include two NASA missions.
Currently, he is a member of the MER mission team, serving
as the development lead for MAPGEN, which is an
interactive activity planning tool for the Spirit and
Opportunity rovers.

Dr. Jeremy Frank is a research scientist at NASA Ames
Research Center. He has extensive experience in planning
and scheduling, as well as in constraint reasoning, and has
worked on applications ranging from satellite operations
scheduling to flight path planning of airborne
observatories.

